
 International Journal of Advanced Engineering Technology E-ISSN 0976-3945

IJAET/Vol.II/ Issue I/January-March 2011/270-276

 Research Article

DYNAMICALLY CO-SYNTHESIS OF H/W & S/W AND

OPTIMIZATION IN RECONFIGURABLE EMBEDDED

SYSTEM

Sunil Kr. Singh
1
, R. K. Singh

2
, M. P. S. Bhatia

3

 Address for Correspondence
1
 Ph.D, Research scholar, Uttarakhand Technical University, Uttarakhand, INDIA

2
 Professor, Uttarakhand Technical University, Uttarakhand, INDIA,

3
Professor, Netaji Subhash Institute of Technology (NSIT), New Delhi.INDIA

E Mail anujsunilsingh@yahoo.co.in

ABSTRACT
Field Programming Gate Array (FPGA) play an important role in reconfigurable computing. Reconfigurable

computing has been used to build reconfigurable embedded system. Reconfigurable embedded System is

dynamically changing in the hardware circuit at runtime with the reconfigurable characteristic of Programmable

Logic Devices like FPGA, to give the system advantages in both hardware and software. A general embedded

system has high performance with minimum flexibility but due to fast development of technology, embedded

system need more performance with more flexibility. Reconfigurable computing devices like FPGA promise to

meet both the needs i.e. flexibility and performance. Reconfigurable hardware can provide a flexible and

efficient platform for fulfilling the device area, cost, performance, and power requirements of many embedded

systems. In this paper, we try to presents an overview of reconfigurable computing in embedded systems in

terms of runtime hardware & software optimization, co- synthesis process and its benefits. We also try to solve

some of design issue, tool and method for designing of Reconfigurable Embedded System.

KEYWORD: Reconfigurable Computing, ASIC, FPGA, HW/SW partitioning, Dynamic reconfiguration,

Scheduling, HW/SW co-synthesis.

==

I. INTRODUCTION

With the uninterrupted progress of the

electronics and the computer technologies,

many emerging application in the fields of

multi-media, (mobile) communication,

networking, computing, consumer electronics

etc. require high performance, flexibility and

wide variety of functionalities after the system

utilization. That’s why we try to present in this

paper that system architecture has been a

emerging topic for research and development

and much has change over last few years of

the history of modern high-performance

embedded system. Flexible system must

function in rapidly changing environment in

multiple mode of operation. For such system,

efficient hardware architecture must mach

with algorithm to maximize performance and

minimize resource. So that structurally

adaptive reconfigurable architecture can meet

both these need, achieving high performance

with changing algorithm[3].

Reconfigurable computing device, like FPGA

(Field programmable Gate Array) allow the

implementation of architecture that change in

response to the changing environment. These

reconfigurable hardware components are

already being used in combination with

traditional processor to deliver novel ways of

implementing application. So FPGA

technology shows great promise computational

system. Thus the target systems are built on a

heterogeneous computing platform: including

reconfigurable H/W, ASIC and general

purpose processor.

FIG. 1: General structure view of Dynamic

reconfigurable Embedded System

 International Journal of Advanced Engineering Technology E-ISSN 0976-3945

IJAET/Vol.II/ Issue I/January-March 2011/270-276

II. RELATED RESEARCH WORK

Research related area in the field of

Reconfigurable Computing is rapidly

advancing for scientific and high performance

multimedia applications. While today’s Field

programmable Gate Array (FPGA) technology

shows great promise for implementing

reconfigurable computational systems, their

capabilities in certain areas (such as floating

point arithmetic) cannot equal other

technologies. For this reason, efficient system

architectures must encompass an

heterogeneous mix of the best technologies.

The target systems are built on a

heterogeneous computing platform: including

configurable hardware, ASIC and general

purpose processors and FPGA based upon

partial reconfigurable SRAM[3,5,6]. The

primary difficulty in this approach lies in

system design. A designer must now maintain

a set of different system architectures, which

exist at different times in the system’s lifetime,

and map these architectures onto the same

group of resources. The designers must

manage the behaviour of the system,

determining the operational modes of the

system, the rules for transitioning between

operational modes, and the functional

properties within each operational mode. In

addition, the system must make efficient use of

the resources, enabling the designer to

minimize the envelope of hardware required to

support the union of all operational modes.

Currently system design tools are insufficient

to manage this complexity[12]. In this paper,

we try to propose some basic tool for

designing RES.

III. RECONFIGURABLE COMPUTING

SYSTEM:

Conventional computing for the execution of

algorithm have primary two methods, one is

using Von-Neumann computing in which

programming of microprocessor/

microcontroller using S/W. the second

method is making application specific

processor or integrated circuits. The first one is

more flexible solution with performance

degradation . in the later method the system

has been designed for particular application ,

may not be cost effective to modify to add

more feature. So the use of reconfigurable

computing system (RCS) which fill the gap

between H/W (ASIC/ASIP) & S/W

(Microprocessor) approaches. Because

conventional computing system have fixed

H/W and variable algorithm (S/W) to

implement a system but In RCS, it has both

H/W as well as algorithm (S/W) are

variables[7][13].

With this approach, reconfigurable computing

systems have some basic properties and model

which are given as:

A) PROPERTIES OF RCS:

Reconfigurable configurable computing

system normally consisting of a matrix of

programmable computational units with a

programmable interconnection network

superimposed on the computational matrix.

The main characteristics that have in RCS are

1. Distributed computation,

2. Configurable data path

3. Spatial computation

4. Distributed control and scheduling

B) DESIGNE MODELS OF

RECONFIGURABLE COMPUTING

There are some basic model can be used for

simulating the architecture of RCS, so that a

designer carefully analyze the need of method

and component used in design of target

system. Some are given as

1. Behavioural modelling

2. Algorithm / Structural Modelling

Mesh model

3. Resource Modelling

4. Partially Reconfigurable model

5. Multi-context modelling

 International Journal of Advanced Engineering Technology E-ISSN 0976-3945

IJAET/Vol.II/ Issue I/January-March 2011/270-276

6. Constraint modelling

7. Parallel Model

IV. CONFIGURATION & SYNTHESIS IN

EMBEDDED SYSTEM:

A basic model configuration process generates

hardware architecture specifications, software

modules, process / schedule tables,

communications maps, synthesizable hardware

specifications, and a run-time Configuration

Manger for dynamic adaptation to changing

environments. The synthesis process attempts

to optimize hardware/software architectures

for user- cost such as weight, power,

algorithmic accuracy and flexibility[14].

At this point, the synthesis procedure can

generate the actual runtime artifacts. From the

behavioral models, a set of tables is produced

for the Configuration Manager. The state

based behavior is defined in the Behavior

Models. These models are transformed into a

compact state table. The table contains next

state equations for each operational mode. The

interfaces to internal and external events are

generated to provide the state transition

variables to the state machine. These tables

and variable interfaces are executed directly by

the configuration manager. The synthesis

process for hardware, software and both are

given as[8,12]:

A) HARDWARE SYNTHESIS

For each configurable component (FPGA), a

design specification is generated. This design

specification includes a hardware design file

for each component for each mode. The design

for a component*mode is specified in

structural VHDL. The VHDL design

incorporates computational components from

the design library, which can contain user

defined VHDL behavioral descriptions and

vendor-supplied Intellectual Property (IP)

modules. These modules are glued together

using components from a standard interface

runtime library, which is part of the Runtime

Environment described later. These interfaces

connect computational components on the

same chip with simple FIFO’s and

asynchronous handshaking interfaces. These

interface components manage the physical

hardware resources (pins and wires), buffer

data, and multiplex multiple logical

communications across a single set of wires.

When required, data format conversions are

also supplied.

 B) SOFTWARE SYNTHESIS

For the general-purpose RISC/DSP

components, a set of software specifications is

generated. These specifications provide the

information needed by the Runtime

Environment to enact the desired

computational behavior. The Runtime

Environment requires several categories of

design files:

• Software Load Modules contain

executable modules that are downloaded

to the processors in the system. The

system can generate a common load

module that contains the superset of all

executable functions (if memory is

sufficient) or it will generate a customized

module for each of the processors in the

system. The customized module is clearly

more memory-efficient.

• Real-time schedules contain the list of

processes and their priorities. A unique

schedule is generated for each processor

and for each mode of operation.

• Communication maps describe the

information flow between processes.

These “streams” can perform

communication between two modules on

the same processor, or they can transport

data across the network, through

intermediate processors, and to a remote

process anywhere in the system.

 International Journal of Advanced Engineering Technology E-ISSN 0976-3945

IJAET/Vol.II/ Issue I/January-March 2011/270-276

C) H/W & S/W SYNTHESIS

Interfaces between software modules and

hardware modules/data sources/sinks are

automatically inserted during the synthesis

process. These interfaces perform the “care

and feeding” of hardware interfaces,

converting complex communication protocols

into simpler hardware compatible protocols.

The interfaces also multiplex multiple logical

streams over a single physical port and

perform data conversion functions [13].

The result of the synthesis and post processing

is a complete executable system, ready for

deployment. The deployment is performed in

concert with the Runtime Environment.

V. DYNAMIC RUNTIME RECONFI-

GURATION

The dynamic runtime reconfiguration must

support implementation platforms with the

following attributes:

• Heterogeneity:

Optimizing the architecture for performance,

size, and power requires that the most

appropriate implementation techniques be

used. Implementations will require software

(implemented on RISC and DSP processors),

configurable hardware on FPGAs, and a mix

of ASIC components.

• Low overhead / High Performance:

The runtime environment must minimize

overhead, since overhead results in extra

hardware requirements.

• Hard Real-Time:

The target systems have significant real-time

constraints.

• Reconfiguration:

The execution environment must allow

hardware and software resources to be

reallocated dynamically. During

reconfiguration, the application data must

remain consistent and real-time constraints

must be satisfied.

All the above issues must be addressed at

multiple levels of system configuartion. At the

lowest level, the hardware must be capable of

reconfiguration. As in shown figure: 2.

a) Static configuration

b) Dynamic configuration

Figure 2: A general view of system

configuration

Software-programmable components, such as

DSP’s and RISC processors, have excellent

inherent hardware support for reconfiguration,

since software has the ability to change system

function by changing memory contents.

Internal CPU hardware structures are designed

to restrict dangerous conditions that could

damage hardware. FPGA’s are an unrestricted

collection of gates, switches, and connectors.

This process must be provided by a

cooperation of the design process and the

runtime infrastructure.

VI. HARDWARE ARCHITECTURE &

APPLICATION OPTIMIZATION

A) Architecture optimization

Reconfigurable system is a promising

alternative to deliver both flexibility and

performance at the same time. Technology-

dependent tools and high-level abstract

supporting tools have been proposed to solve

the various design problems at different

abstraction levels. However, a complete

overview of how to integrate them into a

single design flow is missing. In this work, we

use a real case study to demonstrate our design

target architecture optimization flow of Run

Time Reconfigurable (RTR) systems.

 International Journal of Advanced Engineering Technology E-ISSN 0976-3945

IJAET/Vol.II/ Issue I/January-March 2011/270-276

Figure 3: A general View of system-level design flow

The above design flow is divided into some

basic system-level design and implementation-

level design. The process at system-level

design is to make various partitioning

decisions and evaluate system performance. At

implementation level, executable code and

HW net list are generated using technology-

dependent tools. A general view of the system-

level design flow is given in above Figure 3.

The some basic following new features are

identified in each phase when reconfigurability

is taken into account.

(i) System requirements/specification capture

needs to identify requirements and goals of

reconfigurability (e.g., flexibility for

specification changes and performance

scalability).

(ii) Architecture definition needs to model the

reconfigurable technologies of different types

and vendors at abstract level and include them

in the architecture mode.

(iii) System partitioning needs to analyze and

estimate the functions of the application for

SW, fixed HW, and reconfigurable HW. The

parts of the targeted system that will be

realized on reconfigurable HW must be

identified. There are some rules of thumb that

can be applied. If an application has roughly

several same sized hardware accelerators that

are not used at the same time, these

accelerators can be implemented onto DRHW.

If an application has some parts in which

specification changes are foreseeable or there

are foreseeable plans for new generations of

the applications, it may be beneficial to

implement it onto DRHW.

(iv) Mapping needs to map functions allocated

to reconfigurable hardware onto the respective

architecture model. The special concerns at

this step are the temporal allocation and the

scheduling problem. Allocation and

scheduling algorithms need to be made either

online or offline.

Figure 4: A general view of initial fixed

architecture

 International Journal of Advanced Engineering Technology E-ISSN 0976-3945

IJAET/Vol.II/ Issue I/January-March 2011/270-276

(v) System-level simulation needs to observe

the performance impacts using reconfigurable

resources for a particular system function. The

effect of configuration overhead should be

highlighted in order to support designers to

perform system analysis or design space

exploration.

The reconfigurable components are mainly

used as coprocessors in System on Chips. The

new architecture is redefined partly based on

the existing architecture and partly using the

system specification as input. The initial

architecture is often dependent on many things

not directly resulting from the requirements of

the application. Therefore, the initial & final

architectures and the HW/SW partition are

often given at the beginning of system-level

design (figure 4, 5)[9][12].

Figure 5: A modified view of reconfigurable

system level design flow

B) APPLICATION OPTIMIZATION

Generally FPGA has used over the ASIC

design flow for the embedded system because

run- time or dynamic reconfiguration is of

special interest among all the researcher

because it provides a performance and cost

advantage over a load – time configuration.

The processor can be an embedded RISC like

ARM or MIPS, generally such configuration

use an open- source processor LEON, which is

compatible with SPARC V8 and has same

performance as RISC. The main advantage of

an open source core is that to provide design

flexibility, i.e. provide interface between

FPGA and processor. The FPGA has direct

access to main memory. It compile C code to

the FPGA easier the other communication

models[7][6].

 Generally, there is a particular border

between H/W and S/W design. Software is

generally programmed in a sequential mode

but hardware is developed in parallel mode. In

dynamic reconfiguration, the gap between

H/W and S/W is burned by FPGA. We try to

manually explain application optimization in

RES through transformation on C source code.

For this purpose we make use of FPGA

features to improve performance and reduce

area.

Figure 6: Application optimization Design

flow in reconfigurable embedded system.

Due to dynamic reconfiguration, the

optimization is divided into two stages. The

first stage in intra-function optimization. Main

techniques include specify word length, simple

SIMD etc. the intra-function optimization will

not affect other parts of the system. In the

 International Journal of Advanced Engineering Technology E-ISSN 0976-3945

IJAET/Vol.II/ Issue I/January-March 2011/270-276

second stage, after the temporal partitioning,

we get the knowledge of different functions

that how they are grouped into one

configuration and how they are perform inter-

function optimization (figure:6). The main

technique includes resource, localizing

memory access, pipelining and parallelizing

among functions. So by using two stage

optimization, we get more performance and

use small area than a sequentially written C

program can provide. As a c based

methodology, various design steps are

performed on c level, like, profiling, mapping,

optimization and restructuring execution flow.

Its also reduce the debugging and verification

work[5][12].

VII. CONCLUSION:

The main advantage of Reconfigurable

Embedded system is the combined flexibility

and performance. However, implementing

RES does require extra efforts in the various

design stages, from the general View of

system-level design flow to modified view of

reconfigurable system level design flow, In

this paper, we discuss the design issue of

Reconfigurable Embedded System (RES) by

using reconfigurable computing. High

performance with limited resources needs

application-specific architectures (ASIC),

while flexibility requires adaptive capabilities.

We also present a design flow of application

optimization for Reconfigurable systems.

However, some key step of our design issue,

tools and method for designing of

Reconfigurable Embedded System are still

done manually, and the demonstrator is under

development. We are going to concentrate on

different design issue. The main challenge is to

develop such system also to develop a

compiler which compile the selected and

optimize application code for the target

reconfigurable embedded system. Our goal is

to provide the basic design issue for

reconfigurable embedded system architecture.

REFERENCE:

1. Villasenor, J., Mangione—Smith, W.,

“Configurable Computing”, Scientific

American, June, 1997.

2. S. Edwards, L. Lavagno, E.A. Lee, A.

Sangiovanny- Vincentelli, “Design of

Embedded Systems: Formal Models,

Validation, and Synthesis”, Proc. of the IEEE,

vol. 85, no. 3, March, 1997, pp. 366-390.

3. Sunil. Kr. Singh, Dr. M.P.S. Bhatia, Dr. Rajni

Jindal, Design issue of reconfigurable

embedded system, in Proceeding of the

International conference on advance

computing technologies, December 2008

4. Xilinx , Inc., Virtex- E 1.8V field

programmable Gate Array, Feb 2001.

5. R. Ernst, J. Henkel, and T. Benner,

“Hardware–software cosynthesis for

microcontrollers,” IEEE design Test Comput.,

vol. 10, pp. 64–75, Dec.1993.

6. K. M. GajjalaPurna and D. Bhatia, “Temporal

partitioning and scheduling for reconfigurable

computing,” Proc. IEEE Symp. FPGAs for

Custom Computing Machines, pp. 329–330,

1998.

7. K. Bondalapati andV. Prasanna.

“Reconfigurable Computing systems in Proc.

IEEE, vol.90, no.7, July 2002, pp.1201-1217.

8. K. Chatta and R.Vemuri, “Hardware–software

codesign for dynamically reconfigurable

architectures,” in Proc. of FPL’99, Glasgow,

Scotland, Sept. 1999.

9. Juanjo Noguera and Rosa M. Badia, “HW/SW

Codesign Techniques for Dynamically

Reconfigurable Architectures”, IEEE

Transactions on VLSI Systems, Vol. 10, NO.

4, august 2002, pp 399-415.

10. Xilinx, “Virtex platform datasheet,” May 2007,

http://www.xilinx.com. ,Septembe 1999.

11. Bondalapati andV. Prasanna. “Reconfigurable

Computing systems in Proc. IEEE, vol.90,

no.7, July 2002, pp.1201-1217

12. Juanjo Noguera and Rosa M. Badia, “HW/SW

Codesign Techniques for Dynamically

Reconfigurable Architectures”, IEEE

Transactions on VLSI Systems, Vol. 10, NO.

4, August 2002, pp 399-415.

13. Andr´e DeHon and John Wawrzynek,

“Reconfigurable Computing: What, Why, and

Implications for Design Automation”,

technical report.

14. Sandeep Neema: “Constraint based System

Synthesis”, Technical Report, Department of

Electrical and Computer Engineering,

Vanderbilt University, 1999.

